邮箱:995831774@qq.com
手机:13303377029
电话:0317-7777829
地址:河北省沧州市献县郭庄镇工业区
发布时间:2023-01-08 07:30:01 人气:
电液伺服*试验机在建筑材料,金属材料的力学检测上,由于其良好的控制性能和试验精度,得到了广泛的应用。在大型钢铁企业,及质检单位试验室里,电液伺服*试验机往往是多台进行高负荷运转。而试验人员大多缺乏保养维护经验,所以,经常出现这些那些的问题。厂家及用户都不胜其烦。
其实,电液伺服*试验机虽精密但并不娇贵,只要掌握以下十点心得,使用就会得心应手了。
1、清扫与清洁:在试验过程中不可避免的会产生一些粉尘,如氧化皮、金属碎屑等等,如果不及时打扫干净,不仅会对某些零件的表面产生磨损、划伤等,更严重的是如果这些粉尘进入电液伺服*试验机液压系统,会产生堵塞阀孔、划伤活塞表面等非常严重的后果,所以每次使用后的清扫非常关键,一定要保持试验机的清洁;
2、用合适的夹具完成相应的试验,否则不但试验不会很成功,而且还会损坏夹具:电液伺服*试验机一般只配备了做标准试样的夹具,如果要做非标准的试样,比如钢绞线,搭接钢精等,必须要增配相适应的夹具;还有一些超硬度的材料,比如弹簧钢等,必须使用特殊材料的夹片,否则会损坏夹具;
3、液压油:必须经常检查油箱液面并及时补油;一般要每使用2000至4000小时换一次油;然而*重要的是油温不得超过70℃,在油温超过60℃时必须打开冷却系统;
4、过滤器:对于不带堵塞指示器的过滤器,一般每隔6个月要更换一次。对于带堵塞指示器的过滤器,要不断监视,当指示器报警后必须立即更换;
5、蓄能器:有些电液伺服*试验机上配有蓄能器,必须保证蓄能器的压力处于正常工作状态,如果发现压力不够,需要马上补充压力;只准向蓄能器充入氮气;
6、元器件定期巡检:所有压力控制阀、流量控制阀、泵调节器以及压力继电器、行程开关、热继电器之类的信号装置,都要进行定期检查;
7、冷却器:采用风冷的冷却器的积垢要定期清理;采用水冷的要定期观察冷却铜管有没有破裂漏水的现象;
8、电液伺服*试验机丝杠及传动部分要定期涂润滑油,防止产生干摩擦;
9、电液伺服*试验机紧固件要定期进行锁紧:试样拉断后的振动经常会使一些紧固件退松,一定要定期进行巡检,以避免由于紧固件松动造成大的损失。
10、其他检查:提高警惕并密切注意细节,可以及早发现事故苗头,防止酿成大的事故。在设备*初投入运行的时候尤其是这样。应该始终注意外泄漏、污染物、元器件损坏以及来自泵、联轴器等的异常噪声。
仪器网-专业分析仪器服务平台,实验室仪器设备交易网,仪器行业专业网络宣传媒体。
相关热词:
等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪*材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
电子*试验机测控环节的影响试验机测控环节是整个试验机的核心,随着技术的发展,目前这一环节基本上采用了各种电子电路实现自动测控。由于自动测控知识的深奥,结构的复杂,试验方法的不透明,一旦在产品的设计中考虑不周,就会对结果产生严重的影响,并且难以分析其原因。针对材料屈服点的求取*主要的有下列几点: 1、传感器放大器频带太窄 由于目前试验机上所采用的力值检测元件基本上为载荷传感器或压力传感器,而这两类传感器都为模拟小信号输出类型,在使用中必须进行信号放大。众所周知,在我们的环境中,存在着各种各样的电磁干扰信号,这种干扰信号会通过许多不同的渠道偶合到测量信号中一起被放大,结果使得有用信号被干扰信号淹没。为了从干扰信号中提取出有用信号,针对材料试验机的特点,一般在放大器中设置有低通滤波器。合理的设置低通滤波器的截止频率,将放大器的频带限制在一个适当的范围,就能使试验机的测量控制性能得到极大的提高。然而在现实中,人们往往将数据的稳定显示看的非常重要,而忽略了数据的真实性,将滤波器的截止频率设置的非常低。这样在充分滤掉干扰信号的同时,往往把有用信号也一起滤掉了。在日常生活中,我们常见的电子秤,数据很稳定,其原因之一就是它的频带很窄,干扰信号基本不能通过。这样设计的原因是电子秤称量的是稳态信号,对称量的过渡过程是不关心的,而材料试验机测量的是动态信号,它的频谱是非常宽的,若频带太窄,较高频率的信号就会被衰减或滤除,从而引起失真。对于屈服表现为力值多次上下波动的情况,这种失真是不允许的。就*材料试验机而言,笔者认为这一频带*小也应大于10HZ,达到30HZ。在实际中,有时放大器的频带虽然达到了这一范围,但人们往往忽略了A/D转换器的频带宽度,以至于造成了实际的频带宽度小于设置频宽。以众多的试验机数据采集系统选用的AD7705、AD7703、AD7701等为例。当A/D转换器以“*高输出数据速率4KHZ”运行时,它的模拟输入处理电路达到的频带宽度10HZ。当以试验机*常用的100HZ的输出数据速率工作时,其模拟输入处理电路的实际带宽只有0.25HZ,这会把很多的有用信号给丢失,如屈服点的力值波动等。用这样的电路当然不能得到正确试验结果。 2、数据采集速率太低 目前模拟信号的数据采集是通过A/D转换器来实现的。A/D转换器的种类很多,但在试验机上采用*多的是∑-△型A/D转换器。这类转换器使用灵活,转换速率可动态调整,既可实现高速低精度的转换,又可实现低速高精度的转换。在试验机上由于对数据的采集速率要求不是太高,一般达每秒几十次到几百次就可满足需求,因而一般多采用较低的转换速率,以实现较高的测量精度。但在某些厂家生产的试验机上,为了追求较高的采样分辨率,以及极高的数据显示稳定性,而将采样速度降的很低,这是不可取的。因为当采样速度很低时,对高速变化的信号就无法实时准确采集。例如金属材料性能试验中,当材料发生屈服而力值上下波动时信号变化就是如此,以至于不能准确求出上下屈服点,导致试验失败,结果丢了西瓜捡芝麻。 那么如何判断一个系统的频带宽窄以及采样速率的高低呢? 严格来说这需要许多的专用测试仪器及专业人员来完成。但通过下面介绍的简单方法,可做出一个定性的认识。当一个系统的采样分辨率达到几万分之一以上,而显示数据依然没有波动或显示数据具有明显的滞后感觉时,基本可以确定它的通频带很窄或采样速率很低。除非特殊场合(如:校验试验机力值精度的高精度标定仪),否则在试验机上是不可使用的。 3、控制方法使用不当 针对材料发生屈服时应力与应变的关系(发生屈服时,应力不变或产生上下波动,而应变则继续增大)国标推荐的控制模式为恒应变控制,而在屈服发生前的弹性阶段控制模式为恒应力控制,这在绝大多数试验机及某次试验中是很难完成的。因为它要求在刚出现屈服现象时改变控制模式,而试验的目的本身就是为了要求取屈服点,怎么可能以未知的结果作为条件进行控制切换呢?所以在现实中,一般都是用同一种控制模式来完成整个的试验的(即使使用不同的控制模式也很难在上屈服点切换,一般会选择超前一点)。对于使用恒位移控制(速度控制)的试验机,由于材料在弹性阶段的应力速率与应变速率成正比关系,只要选择合适的试验速度,全程采用速度控制就可兼容两个阶段的控制特性要求。但对于只有力控制一种模式的试验机,如果试验机的响应特别快(这是自动控制努力想要达到的目的),则屈服发生的过程时间就会非常短,如果数据采集的速度不够高,则就会丢失屈服值(原因第2点已说明),优异的控制性能反而变成了产生误差的原因。所以在选择试验机及控制方法时不要选择单一的载荷控制模式。
相关推荐