1 引言
测量温度的
传感器有几种。为具体应用选择适当的温度传感器取决于待测温度范围以及所需的精度。系统精度取决于温度传感器的精度以及对传感器输出进行数字化的模数转换器的性能。在多数情况下,由于传感器信号非常微弱,因此需要高分辨率模数转换器。Σ-Δ模数转换器具有高分辨率,因而非常适合这种系统,而且这种转换器往往包含温度测量系统所需的内置电路,如激励电流源。本应用注释主要介绍可以利用的温度传感器(热电偶、电阻温度检测器(RTD)、热敏电阻器与热敏二极管)以及连接传感器与模数转换器所需的电路,并介绍对模数转换器的性能要求。
热电偶
热电偶由两种不同类型的金属组成。当温度高于零摄氏度时,在两种金属的连接处会产生温差电压,电压大小取决于温度相对于零摄氏度的偏差。热电偶具有体积小、坚固耐用、价格相对便宜、工作温度范围宽等优点,非常适合恶劣环境中的极高温度(高达2300°C)测量。不过,热电偶的输出为毫伏级,因此需要经过精密放大才能进行进一步处理。不同类型热电偶的灵敏度也不一样,一般仅为每摄氏度几毫伏,因此为了准确读出温度,需要高分辨率、低噪声模数转换器。当热电偶与印制电路板的铜印刷线连接时,在热电偶与铜印刷线连接的地方会出现另一个热电偶接点。其结果是产生一个抵消热电偶电压的电压。为了补偿这个反向电压,我们在热电偶-铜线连接点放置一个温度传感器,测量连接处的温度。这就是所谓的冷接点。
图1给出利用3通道、16/24位AD7792/AD7793Σ-Δ模数转换器(也可以使用6通道AD7794/AD7795)的热电偶系统。其片内
仪表放大器首先对热电偶电压进行放大,然后通过模数转换器对放大的电压信号进行模数转换。热电偶产生的电压偏置在地电平附近。片内激励电压源将其偏置到放大器线性范围以内,因此系统能够利用单电源工作。这种低噪声、低漂移、片内、带隙基准电压源,能够确保模数转换的精度,从而保证整个温度测量系统的精度。
标签: